卷积神经网络VGG
 CV   |  2022年09月23日   |  阅读:1531次
1. 概述
VGG[1]是Oxford的Visual Geometry Group的组提出的,VGG的缩写也来自于这个组的名字。VGG网络探索了提升网络的深度对最终的图像识别准确率的重要性,同时在VGG中尝试使用小的卷积核来构建深层的卷积网络。VGG在当年的ILSVRC 2014上取得了第一的成绩,证明了增加网络的深度能够在一定程度上提高网络的性能。
2. 算法的基本思想
2.1. VGG的原理
在VGG网络中,有两种结构,分别是VGG16和VGG19,两者只是网络深度不一样。以VGG16为例,在VGG16中,相比于AlexNet,其最大的改进是采用几个3×3的卷积核代替了AlexNet中的较大的卷积核,主要是11×11,5×5。相比于大的卷积核,采用多个较小卷积核的堆叠,一方面能通过多层的非线性特性增强模型的学习能力(卷积+ReLU为一个组合),同时能进一步减少模型的参数。
以5×5的卷积核为例,可通过堆叠两个3×3的卷积核实现5×5的卷积效果,具体过程如下图所示:
5×5卷积核的参数个数为25+1个,与5×5的卷积核相比,堆叠两个3×3的参数个数为9+1+9+1,在实现了同样的功能的情况下能够减少参数的个数。
2.2. VGG的网络结构
VGG网络的结构的具体参数如下图所示:
由上图可以看出,VGG16和VGG19只是在层数上不一样,VGG16中包含了16个隐藏层,包括13个卷积层和3个全连接层,如上图中的D列所示,VGG19中包含了19个隐藏层,包括16个卷积层和3个全连接层,如上图中的E列所示。
以VGG16为例,参照[2]的参数格式,可以绘制出如下的网络结构:
从上述的网络结构中可以看出,在VGG网络中只包含了卷积+ReLU,pooling,全连接,dropout操作模块,摒弃了在AlexNet中使用的LRN归一化模块,并在实验中验证LRN对于最终效果的影响较小。VGG的整个网络结构相对比较简单,但就是这样简单的网络结构却能提升整体的识别效果,这得益于较深的网络结构。在上述的结构中:
- data:大小为224×224×3
- 第一组卷积(包括conv1_1,relu1_1,conv1_2,relu1_2,pool1)
- conv1_1:输入(224×224×3),输出:(224×224×64,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为64)
- relu1_1:输入(224×224×64),输出(224×224×64)
- conv1_2:输入(224×224×64),输出:(224×224×64,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为64)
- relu1_2:输入(224×224×64),输出(224×224×64)
- pool1:输入(224×224×64),输出(112×112×64,其中,核的大小为2×2,步长S为2)
- 第二组卷积(包括conv2_1,relu2_1,conv2_2,relu2_2,pool2)
- conv2_1:输入(112×112×64),输出:(112×112×128,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为128)
- relu2_1:输入(112×112×128),输出(112×112×128)
- conv2_2:输入(112×112×128),输出:(112×112×128,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为128)
- relu2_2:输入(112×112×128),输出(112×112×128)
- pool2:输入(112×112×128),输出(56×56×128,其中,核的大小为2×2,步长S为2)
- 第三组卷积(包括conv3_1,relu3_1,conv3_2,relu3_2,conv3_3,relu3_3,pool3)
- conv3_1:输入(56×56×128),输出:(56×56×256,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为256)
- relu3_1:输入(56×56×256),输出(56×56×256)
- conv3_2:输入(56×56×256),输出:(56×56×256,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为256)
- relu3_2:输入(56×56×256),输出(56×56×256)
- conv3_3:输入(56×56×256),输出:(56×56×256,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为256)
- relu3_3:输入(56×56×256),输出(56×56×256)
- pool3:输入(56×56×256),输出(28×28×256,其中,核的大小为2×2,步长S为2)
- 第四组卷积(包括conv4_1,relu4_1,conv4_2,relu4_2,conv4_3,relu4_3,pool4)
- conv4_1:输入(28×28×256),输出:(28×28×512,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为512)
- relu4_1:输入(28×28×512),输出(28×28×512)
- conv4_2:输入(28×28×512),输出:(28×28×512,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为512)
- relu4_2:输入(28×28×512),输出(28×28×512)
- conv4_3:输入(28×28×512),输出:(28×28×512,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为512)
- relu4_3:输入(28×28×512),输出(28×28×512)
- pool4:输入(28×28×512),输出(14×14×512,其中,核的大小为2×2,步长S为2)
- 第五组卷积(包括conv5_1,relu5_1,conv5_2,relu5_2,conv5_3,relu5_3,pool3)
- conv5_1:输入(14×14×512),输出:(14×14×512,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为512)
- relu5_1:输入(14×14×512),输出(14×14×512)
- conv5_2:输入(14×14×512),输出:(14×14×512,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为512)
- relu5_2:输入(14×14×512),输出(14×14×512)
- conv5_3:输入(14×14×512),输出:(14×14×512,其中,卷积核大小为3×3,padding为1,步长S为1,卷积核的个数为512)
- relu5_3:输入(14×14×512),输出(14×14×512)
- pool5:输入(14×14×512),输出(7×7×512,其中,核的大小为2×2,步长S为2)
- 第一组全连接(包括fc6,relu6,drop6)
- fc6:输入(7×7×512,通过flatting,得到25088),输出(4096)
- relu6:输入(4096),输出(4096)
- drop6:输入(4096),输出(4096)
- 第二组全连接(包括fc7,relu7,drop7)
- fc7:输入(4096),输出(4096)
- relu7:输入(4096),输出(4096)
- drop7:输入(4096),输出(4096)
- 第三组全连接(包括fc8):输入(4096),输出(1000)
3. 总结
VGG网络结构相对比较简洁,整个网络结构中只用到了3×3的卷积核和2×2的最大池化,通过堆叠小的卷积核实现较大卷积的操作,通过这样的方式加深了网络的结构,但是在网络中还是出现计算量较大的情况,主要是出现在最后的几组全连接层,其中第一个全连接fc6的参数为25088×4096+4096=102764544。
参考文献
[1] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[2] https://dgschwend.github.io/netscope/#/preset/vgg-16
[3] 一文读懂VGG网络
[4] VGG in TensorFlow