涉及到机器学习中的基本概念、不同的算法以及主流的模型。
- Activation Functions
- Gradient Descent
- Computation Graph
- Backpropagation
- Gradients for L2 Regularization (weight decay)
- Vanishing/Exploding Gradients
- Mini-Batch Gradient Descent
- Stochastic Gradient Descent
- Choosing Mini-Batch Size
- Gradient Descent with Momentum (always faster than SGD)
- Gradient Descent with RMSprop
- Adam (put Momentum and RMSprop together)
- Learning Rate Decay Methods
- Batch Normalization
- Parameters
- Learnable and Hyper Parameters
- Parameters Initialization
- Hyper Parameter Tuning
- Regularization
- L2 Regularization (weight decay)
- L1 Regularization
- Dropout (inverted dropout)
- Early Stopping
- Models
- Logistic Regression
- Multi-Class Classification (Softmax Regression)
- Transfer Learning
- Multi-Task Learning
- Convolutional Neural Network (CNN)
- Filter/Kernel
- Stride
- Padding (valid and same convolutions)
- A Convolutional Layer
- 1*1 Convolution
- Pooling Layer (Max and Average Pooling)
- LeNet-5
- AlexNet
- VGG-16
- ResNet (More Advanced and Powerful)
- Inception Network
- Object Detection
- Classification with Localisation
- Landmark Detection
- Sliding Windows Detection Algorithm
- Region Proposal (R-CNN)
- YOLO Algorithm
- Bounding Box Predictions (Basics of YOLO)
- Intersection Over Union
- Non-max Suppression
- Anchor Boxes
- Face Verification
- One-Shot Learning (Learning a “similarity” function)
- Siamese Network
- Triplet Loss
- Face Recognition/Verification and Binary Classification
- One-Shot Learning (Learning a “similarity” function)
- Neural Style Transfer
- 1D and 3D Convolution Generalisations
- Sequence Models
- Recurrent Neural Network Model
- Gated Recurrent Unit (GRU)
- GRU (Simplified)
- GRU (Full)
- Long Short Term Memory (LSTM)
- Bidirectional RNN
- Deep RNN Example
- Word Embedding
- One-Hot
- Embedding Matrix
- Learning Word Embedding
- Word2Vec & Skip-gram
- Negative Sampling
- GloVe Vector
- Deep Contextualized Word Representations (ELMo, Embeddings from Language Models)
- Sequence to Sequence Model Example: Translation
- Pick the most likely sentence (Beam Search)
- Beam Search
- Length Normalisation
- Error Analysis in Beam Search (heuristic search algorithm)
- Bleu Score
- Combined Bleu
- Attention Model
- Pick the most likely sentence (Beam Search)
- Transformer (Attention Is All You Need)
- Bidirectional Encoder Representations from Transformers (BERT)
- Practical Tips
- Train/Dev/Test Dataset
- Over/UnderFitting, Bias/Variance, Comparing to Human-Level Performance, Solutions
- Mismatched Data Distribution
- Input Normalization
- Use a Single Number Model Evaluation Metric
- Error Analysis (Prioritize Next Steps)
网页链接:
https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes